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ABSTRACT 

A statistical theory developed previously is applied to predictions made with three simple atmospheric models 
under similar boundary and initial conditions. The theory gives minimum variances in height fields of various isobaric 
levels. The governing equations of each model are utilized to  transform these initial variances to  h a 1  variances of 
forecast fields. These variances are a measure of the theoretical minimum errors expected at any future states due to 
presence of initial uncertainties. Using the normal frequency function, these theoretical variances are further trans- 
formed to  probabilities of obtaining forecast heights within specified magnitudes of true heights. These theoretical 
probabilities are compared with observed probabilities of errors in forecast fields obtained by various models for three 
synoptic situations. 

The theoretical probabilities are found to be larger everywhere than the observed ones, in support of the statistical 
theory that provides limiting probabilities not to  be exceeded. A comparison of theoretical minimum variances 
indicates that the growth of these variances is more pronounced in more complex models that incorporate additional 
terms in the governing equations. The effect of hypothetically increasing the number of reporting stations indicates 
that a substantial reduction in initial and final variances is realized when the number of reporting stations is increased 
by two to three times the present number. 

The results of this study offer a possibility of choosing an optimum model to obtain the most reliable short-range 
weather prediction for a given synoptic situation. 

1. INTRODUCTION 

It has been long realized that lack of complete informa- 
tion concerning the intitial state of the atmosphere 
contributes to inaccuracies in the prediction of future 
states. A quantitative assessment of these inaccuracies 
would be very essential in connection with the problem of 
atmospheric predictability. In  recent years, attempts have 
been made to estimate the effect of initial uncertainty on 
the predictability of atmospheric parameters by consider- 
ing simple numerical models (for example, Thompson 
1957, Lorenz 1963). A network sampling theory that 
provides theoretical minimum error distributions for 
predicted meteorological parameters has been developed 
by Gleeson (1961). In previous studies, this theory was 
applied to obtain minimum variances for predictions made 
with a simple barotropic model (Gleeson 1964) and with 
a spectral form of the barotropic vorticity equation 
(Stewart 1961). 

The purpose of the present study i s  to make an inter- 
model comparison of theoretical minimum errors expected 
at  any future states due t o  presence of initial uncertainties. . 
For this comparison, a simple barotropic, a three-level 
quasi-geostrophic, and a two-level balance model are 
chosen. Using data from three synoptic situations, 
theoretical minimum variances of height fields at  various 
isobaric levels are calculated by a procedure described in 
the next section. The growth of these variances with time 
and their dependence on various assumptions of the models 
are discussed in section 5. Finally, possible implications 
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of these results for developing a criterion for optimum 
modeling of the atmosphere are also considered. 

4. ANALYSIS ERRORS 

The network sampling theory mentioned earlier enables 
us to obtain the variance of the error at  any point in a 
two-dimensional analysis of a meteorological parameter. 
In  this development, values interpolated from synoptic 
analysis are regarded as measurements. For example, 
consider a map on which synoptic values of a parameter p 
have been plotted. After the map has been malyzed, one 
can interpolate a value of p at any point. An interpolated 
value of p at any point (not necessarily a station location) 
in general differs from the true value by an amount Aq, 
which is the error in measuring q at that point. Now, 
imagine that the true pattern of q occurs an indefinitely 
large number of times; that the locations of observations 
are distributed independently and randomly relative to 
the pattern each time; and that different analysts make 
independent analyses of the p field everytime the pattern 
recurs. By means of a statistical argument (Gleeson 196l), 
it  is possible to write the variance CJ; of the interpolated 
value of p at a point as 

u2,=0.056a 

Here, (t$/dz) is the true gradient of p at the point, and a 
i s  the square of the average distance between reporting 
stations over the region of analysis. 

We see from this equation that in  a region of tight grad- 
ient, if we displace the isopleths in our analysis by even a 
relatively small amount, there will be a significant error 
in the interpolated value of p at that point. Further, it is 
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logical that the variance of q should be larger or smaller as 
the average distance between reporting stations is larger 
or smaller. 

This theory gives minimum variance because it doe8 not 
consider errors in observations, systematic errora, or 
errors in the physical model. From the equation pertaining 
to a forecast model, a corresponding variance equittion 
can be obtained to calculate the variance of the variable 
p at any future time (see the appendix for further details). 

3. MODELING EQUATIONS 

In  this study, we have used three simple models that 
can be described briefly by the following equations. 

The simplest of the barotropic models for horizontal 
and nondivergent flow can be expressed by the simplified 
form of the vorticity equation 

lOOOm b w.wp 

TWO LEVEL MODEL 

Io0 u . 0  

mn z inmt 

1000 m a w .wg 

THREE LEVEL MODEL 

FIGURE 1.-Vertical grid for two- and three-level models. 

(2) 

Here, the symbols have standard meanings. The hori- 
zontal wind vector V is expressed using a quasi-geostrophic 
assump tion as and 

--- as V.V(~+f). 
at - 

boundary conditions are 

w=O at p=lOO mb 

9 o = w g  at  p=lOOO mb. V== kXVz 
f 

J 

where 7 is the mean value of the Coriolis .parameter over 
the region of analysis. Writing 1 in terms of z, the height 
of a constant pressure surface, we have 

(3) 

Using a suitable finite-difference grid, one can solve 
this equation numerically, and integration can be carried 
out in suitable time steps to obtain z values at  any future 
time at  500 mb, the assumed level of nondivergence. 

The second model considered here is a three-level quasi- 
geostrophic model for which the vorticity equation can be 
written in the form 

(4) 

Here, w=dp/dt is the vertical velocity in the p-coordinate 
system. Making use of the thermodynamic equation con- 
sistent with the quasi-geostrophic assumption and elim- 
inating the time-dependent term between that and the 
vorticity equation, we have the consistent omega equation 
for this model as 

-2 a 2 W  a az  
aP aP f aP 

.v20J+f y = g  - [J(z, TI)]-c v2J (2, -). (5) 

Following Cressman (1960), we obtain the values of up a t  
1000 mb as a sum of terrain induced and frictionally 
induced vertical velocities. On the lateral boundary, w is 
kept zero everywhere a t  all  times. 

The third model chosen here is a two-level balance 
model in which we make use of a balance equation ob- 
tained from the divergence equation as 

v uvtt> +2J(Ul, Vl) =v% (6) 

where 4 is the geopotential, $ the stream function, and 
u+ and vJ. are the rotational parts of the wind com- 
ponents u, v, respectively. As a special form of this equa- 
tion, the Jacobian term is neglected to give a linearized 
balance equation as 

v (fV+) =v24. (7) 

The consistent vorticity equation corresponding to this 
linearized balance filter can be written following Loren2 
(1960) as 

V2(2)=-V. v?r+j---vx a, Vf. 
aP 

Using a consistent thermodynamic equation, we obtain 
the corresponding omega equation as 

Here, u=- (a/6)(&?/+), the static stability, is kept 
+f- a [VX vfl-& Vf. vq-vz 

aP constant on an isobaric surface and is allowed to vary 
only in the vertical. The omega equation is applied at the 
400- ar,d 600-mb levels, while the vorticity equation is 
applied a t  the 300-, 500-, and 700-mb levels, respectively 
(see fig. 1). For solution of the omega equation, the vertical 

This equation has five forcing functions as compared to 
two in the usual quasi-geostrophic omega equation (5). 
Besides the first two terms, namely, the differential vor- 
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ticity advection and the Laplacian of the thermal ad- 
vection, the remaining three terns arise due to the 
divergent part of the wind and the variation of the C o n o h  
parameter. These terms cannot be explicitly evaluated; 
hence, the solution of this equation is obtahed by an 
iterative procedure similar to the one used by Gates and 
Riegel (1963). After obtahhg a convergent solution of a, 
the vorticity equation (8) can be solved, and numencall 
integration can be carried out to obtain forecast heights at  
any future time. 

For each of these models, the variance equation is de- 
veloped by the procedure discussed earlier and is solved 
by numerical techniques to obtab variances of the height 
fields at any future t h e .  

4. RESULTS AN 

The calculations are performed on a rectangular grid 
chosen on a polar stereographic projection, true at 6 0 O  N. 
The grid k extended to cover a major portion of the North- 
ern Hemisphere to minimize the boundary condition 
errors and at the-same time to examhe the large-scale 
atmospherk flow. A @d distance of 500 km (about 4.5" 
of latitude) is chosen in the 2 and y directions. The average 
distance between observing stations over the regions 
covered by the grid is about 570 km; hence, a grid distance 
of 500 km is chosen as it enables us to calculate the 
theoretical variances under certain assumptions. There are 
27 grid points in the x direction and 25 in the y direction 
with 36 grid points chopped off in each of the southeast 
and southwest corners of the North American Continent 
as these r e ~ o n s  are over oceans where there are hardly 
any data points (fig. 2). 

obtain forecast 
and variance fields by each model. Since the objective is 
to compare errors encountered with barotropic as well as 
baroclinic models, the synoptic situations chosen were 
such as to show strong baroclinic development in sub- 
sequent 24 to 48 hr. As an example, we present briefly 
some of the vefication results for the synoptic situation 
of Jan. 25, 1964, for which the initial bpu t  field at 500 
mb is shown in figure 3. The 24-hr forecast fields (solid 
lines) obtained by the three models are presented in 
figures 4 to 6. In each case, the forecast field is super- 
imposed on the ve&cation field (dashed lines) for com- 
p h o n .  The barotropic model merely advects the field 
without any intensiiication and has placed the main 
trough located over the central United States about half 
way between its initial and verifying position. The 
forecast fields obtained by the two baroclizhic models are 
shown in figures 5 and 6. Both these fields are more or 
less aUe, showing some bprovement in the predicted 
position of the main trough as compared with the barotropic 
model; however, none of the two baroclinic models pre- 
dicted any significant development of the system as 
portrayed in the verification field. 

Three synoptic situations were chosen 
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FIQURE 2.-Basic grid showing the outlines of North America can4 
adjoining regions. Dots refer to grid points md NP denotes the 
North Pole. 

The veacation OP forecast fields for the remaking 
two synoptic situations showed similar results. ]Both the 
barocwc models showed some improvement over t h ~  
barotropic model in the predicted position OP the major 
systems, but none of them indicated any sigrScmnt 
development of the systems. 

COMPARISON OF OBSERVED AND BD.BEBRET'ICAR 
ERROR DlSTRlBUTlONS 

For each model, the variance equation is derived ~ F C D ~  
the governing vorticity equation. For example, consider 
the simple barotropic equation (2) for which the vdaam 
equation is given by (13) as developed in the appendix. 
This variance equation is solved by the standard relaxation 
technique to yield the variance of the height tendency, 
that is, Z(&/&), a t  any & h e  step; this together with 
(16) enables us to obtain the m k h u a a a  varkmces of &he 
height field at  any future time. Further, from the forecasb 
height field, we obtain height errors at any future t h e  
for which the verScation field is available. Conshctkg  a 
frequency distribution of these errors, we obttbin relative 
frequencies of height errors to be within specxed mag& 
tudes lhl. For a specsed value of lkl, theoretical values 
of g2(zZ) a t  any future t h e  t can be converted to theoretical 
probability P, using tables of the normal &tributicpnn. 
These &re averaged over the veacation mgbn to oltPt~&~ 
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FIGUBE &-Height field a t  500 mb at  00 GMT on Jan. 25,1964. The 
contour interval is 60 m. 

FIGURE 5.-Same as figure 4, but for the three-level quasi-geo- 
strophic model. 

FIGURE 6.-Same as figure 4, but for the two-level balance model. FIGURE 4.-Twenty-four-hour forecast field (solid lines) a t  500 a b  
obtained by the simple barotropic model, superimposed on 
verification fiald at 00 GMT on Jan. 26, 1964 (dashed lines). 
Solid lines are labeled in tens of meters and dashed lines in full 
meters. cumulative (observed) frequencies of height in the 

forecast fields are also plotted. Figure 7 shows these sets of 
theoretical (solid lines) and observed (dashed lines) 
curves a t  various levels for the synoptic situation of 

P is the “expected” or average limiting probability for Jan. 25, 1964. The verification is made for 24-hr forecasts 
forecast heights to  be in error by no more than obtained by the three-level quasi-geostrophic model. 
Using these values, one can construct a graph of limiting For comparison, the curves for persistence forecasts-if the 
(theoretical) probabilities versus ~z (in meters). Similarly, initial information is presented as a forecast-are also 

- 
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FIQURE 7.-Observed (dashed lines) p d  theoretical (solid lines) 
cumulative error distributions for Z4hr forecast heights obtained 
by the three-level quasi-geostrophic model. Initial data, OO-saar 
on Jm. 25, 1964. 

plotted and labeled accordingly. (The theoretical curve 
for persistence forecasts is obtained by transforming the 
initial variances to average limiting probabilities, while 
the corresponding observed curve is obtained by simply 
constructing a frequency distribution of height errors 
between the initial and the verifying fields.) We see first 
of all that the theoretical curve is everywhere above the 
observed curve, which is in support of our argument 
that the theoretical probabilities me not to be exceeded. 
Further, the theoretical curve a t  each level is lower than 
the corresponding persistence curve, since the integration 

in time adds to the initial variance. The observed curve is, 
in general, higher than the corresponding persistence 
curve, indicating the gain in accuracy of forecast by the 
model over persistence. The curves for 48-hr verification 
for tbe same synoptic situation are shown in figure 8 and 
indicate similar results. The theoretical curves here are 
much lower than the corresponding persistence curves, 
since integration over a longer period has added more to 
the initial variances. The observed curves at  all levels 
approach the persistence curves, indicating the deteriora- 
tion of forecasts with time. In  this study, forecast and 
variance fields were obtained up to a period of 48 hr 
only. As integration is carried over longer periods, we 
expect the theoretical as well as the observed curves 
for a model to drop constantly and reach the level of 
persistence. 

The comparison of observed and theoretical emor 
distributions for the remaining two synoptic situations 
showed similar results, indicating that the theoretical 
probabilities were largest in all cases. 

5. GR 
WITH TIME 

An analysis of variance was made, using the average 
variance over the verification region to get a quantitative 
assessment of the growth of theortical variances with 
time. 

Consider equation (16) in the appendix; the equation 
gives the variance a t  any grid point at  the end of 2HQ 
hours as 

ere, u2(zo) is the initial variance of the z field, T is 
the constant time step, and. u2((az/&), is the variance of 
the height tendency at  the ith time step. With K=24, 
we obtain the variance at  the end of the 48-hr period as 

This can be written as 

Taking U ~ ( Z ~ ~ ) ,  the variance at the end of the 48-la 
period, as the total variance, we see that this total varimco is 
made up of three terms as expressed on the right-hand side of 
(10). These three terms are respectively the initial variance, 
the contribution through -the t h e  integration for the h t  
24-hr period, and the corresponding contribution for 
the subsequent 24-hr period. Equation (10) is averaged 
over the verification area (389 grid points), and the average 
variances (in meters2) of the thee  terms on the right-hand 
side are obtained for all the three models at  various levels. 
Table 1 shows these average vJxiances for the thee  
synoptic situations. 
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TABLE I.-Analysis of variance of 94.6- and 48-hr forecasts for various 
models* 

5 0 0  mb 
(48 hours) 
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IAZl meters 

FIGURE &--Same as figure 7, but for 48-hr forecast heights verifying 
at 00 GMT on Jan. 27, 1964. 

We see from this table that the initial variance explains 
a major portion of the total variance in lower levels, 
especially at 700 mb where the contribution from the 
time integration term is smaller because of the overall 
weaker gradients at  that level. At 300 mb, the contri- 
bution from the time integration term is quite considerable 
as a result of tighter gradients at this level. Further, in 
the case of the two-level balance model, the contribution 
from the time integration term is generally more pro- 
nounced due to the inclusion of additional terms in the 
vorticity equation, namely, the divergence term and the 
Vx Vj term. In general, the contribution to the total 
variance by various terns depends on the magnitude of 

Jan. 25,1964 
Barotropic 
Three-level quasi- 

geostrophic 

Two-level balance 

Dec. 7,1963 
Barotropic 
Three-level 

quasi-geos trophic 

Two-level balance 

Jan. 6,1962 
Barotropic 
Three-level quasi- 

geostrophic 

Two-level balance 

(mb) 
500 
300 
m 
700 
300 
700 

500 
300 
500 
700 
300 
700 

3M) 

300 
500 
700 
300 
700 

(m9 
952 

1692 
962 
437 

1692 
437 

753 
1388 
763 
309 

1388 
309 

1007 
1856 
1007 
638 

1856 
638 

767 
2198 
761 
139 

2285 
142 

390 
1549 
401 
60 

1791 
66 

907 
2613 
014 
240 

2463 
235 

699 
1789 
634 
116 

2223 
162 

402 
1627 
438 

72 
2270 

91 

1098 
3186 
1112 
262 

33M) 
am 

*The (theoretical) total variance Z ( z r 8 )  is partitioned into three components as shown 
in equation (10) and then averaged over the verification area. These average variances 
(meter#) of the three components are shown In columns 3,4, and 5 for the three synoptic 
situations under study. 

the term itself and the way it is evaluated by finite 
difference approximations. The advection term, being the 
largest term, contributes most to the growth of the 
variance. The divergence term is of a smaller order of 
magnitude; and further, its incorporation through vertical 
finite differencing appears to contribute the least. The 
additional term Vx V' has about the same order of 
magnitude as the divergence term but seems to contribute 
more than the divergence term, since it is evaluated using 
horizontal finite differences on an isobaric surface. This 
leads to additional growth of variance for the two-level 
balance model. Further, the growth rates of individual 
grid points lying in the vicinity of an intense trough are 
found to be much more pronounced as a result of strong 
gradients associated with the trough. A typical pattern of 
such a growth rate is presented in figure 9 where the values 
of final standard deviation for a selected grid point are 
plotted against time for various models. Here, the curves 
are obtained using the data of Jan. 25, 1964, and the 
grid point selected lies ahead of the main trough located 
over the central United States (fig. 3). We see that the 
standard deviation steadily increases at  all levels, the 
growth being most pronounced at  the 300-rnb level. 
Consider the two curves a t  the 500-mb level. The lower 
curve is obtained from the simple barotropic model, in 
which the growth of standard deviation is due to the 
presence of the advection term only, while the upper 
curve is obtained from the three-level quasi-geostrophic 
model where the additional increase in variance is due to 
the inclusion of the divergence term at that level. Con- 
sidering further the two sets of curves at  300 and 700 mb, 
we see that the additional increase in the standard devia- 
tion shown by the dashed curves is due to the presence of 
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FIGURE $.-Growth of standard deviation (in meters) of geopotential 
height error with time for a selected grid point. Dashed lines with 
dots, barotropic model; solid lines, threelevel quasi-geostrophic 
models; dashed lines, two-level balance model; initial data, Jan. 
25, 1964. 

the Vx 0 Vj term appearing in the two-level balance 
model. A t  500 mb, the initial standard deviation of 32 m 
grows to ’76 m with the simple barotropic model and 
further to 86 m with the three-level quasi-geostrophic 
model. At 300 mb, the initial standard deviation of 41 m 
grows to 141 m with the quasi-geostrophic mode1 and 
further to 184 m with the balance model. 

This variation of the standard deviation indicates how 
the initial uncertainty grows with time, making the fore- 
cast fields more unreliable as integration is carried over 
longer periods. Further, the growth of initial uncertainty 
is found to be more pronounced in more complex models, 
thus indicating that increasing complexities of a model, in 
general, tend to increwe the growth of initial uncertainty 
and thus may counteract to some extent any possible 
improvement in accuracy that might be expected in return. 
This leads us to the problem of atmospheric predicta- 
bility and the possibility of long-range determinis tic 
prediction. Recent theoretical studies (Lorenz 1963) and 
numerical experiments (Leith 1964, Mintz 1965) have 
suggested that “the limit for deterministic predictability 

of the atmosphere is about 2 weeks in winter and somewhat 
longer in summer.” Lorenz further suggested that in a rea1 
atmosphere this limit may be more likely 2 to 3 days. 
More recently, Qleeson (1967) has shown that ~RTQFS in 
deterministic prediction of a meteorological variable do 
not remain small but eventually become large enough for 
the predicted variable to be completely uncertain within 
its range of possible values. The calculations made here, 
using data from three synoptic situations, seem to suggest 
that the limit for deterministic predictability is reached in 
relatively shorter time for more complex models. From 
table 1, we see that, for the two-level balance model, the 
average initial variance at  300 mb increases by a factor of 
about 4 in 2 days (giving a doubling time of about 2 days 
for the average standard deviation). I n  a recent study 
(Lorenz lSSS), the growth rate of initid B P T O ~  has been 
estimated by following the behavior of ~ W Q  closely re 
sembling states of the atmosphere, and it is concludbd that 
small errors would tend to double in about 2.6 days, in 
the root-mean-square sense. The present calculations 
appear to be in broad agreement with the conclusions of 
Lprenz obtained from a d s e e n t  approach. 

~ A ~ U ~ U U ~ ~  OF SA’!ION DENSOW 

The growth of initial uncertainty, as obtained here in 
terms of the increase in the variance of the analysis em~r ,  
thus intimately depends upon the particular constant 
pressure level chosen, as the variance is directly p p o r -  
tional to  the square of the gradient of the quantity that 
is being analyzed. The growth is also influenced by the 
choice of the model because of the various terms that are 
kcorporated. Throughout this development, we have 
assumed that a, the square of the average distance between 
reporting stations, remains constant. As equation(1) 
suggests, the larger the value of a-which means &he 
smaller the number of reporting stations-the larger will 
be the initial error in the interpolated value of a variable. 
Thus, increasing the number of reporting stations will 
tend to reduce initial errors and correspondingly reduce 
the variance of the forecast fields. 

For obtaining an estimate of the reduction in vanknce, 
different values of a were chosen by hypothetically 
increasing the number of stations over the region of 
analysis. Assuming that the hypothetical increase in n u -  
ber of stations does not significantly change the synoptic 
analysis, mean standard deviations of initial and forecasb 
fields of the three-level quasi-geostrophic model w631~e 
calculated and plotted against the number of stations 8s 
shown in figure BO. Here, the upper half of the figure 
shows the variation of initial standard diviatbn whh 
respect to diflerent values of n, the number ob stations, 
while the lower half of the figure shows similar varhtion 
for the fhal standard deviation at the end of 48 h. The 
reduction in standard deviation is inversely proportional 
t o  the square root of the number of stations and fields 
about 30 percent reduction when the number of stations 
is doubled and about 43 percent when the number is 
trebled. Further increase in the number of stations pro- 
duces a relatively smaller reduction in the standard 
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FIGURE 10.-Standard deviation of geopotential height error as a 
function of number of reporting stations; initial data, Jan. 25, 
1964. 

deviation. If we consider the cost of maintaining a station 
network as uniformly proportional to the number of 
stations, then we may conclude that the point of dimin- 
ishing return is somewhere between 2n and 3n, beyond 
which the reduction in error is too small to  warrant in- 
creasing the station density. In reality, the increasing 
number of stations will reveal the smaller scale features of 
the atmosphere and will in general tend t o  increase the 
gradients of the analyzed field. The calculations made 
here on the assumption of no change in gradient lead us to 
the maximum possible reduction in error and thus give an 
upper limit to the possible gain that could be obtained by 
increasing the number of stations. 

6. SUMMARY AND CONCLUDING REMARKS 

A comparative study of analysis errors and their growth 
with time was made for some simple atmospheric models 
using similar boundary and initial conditions. A barotropic 
and two simple baroclinic models were used in this study, 
and data from three synoptic situations were utilized to 
make predictions up to a period of 48 hr on a rectangular 
grid covering a major portion of the Northern Hemis- 
phere. By means of a network sampfing theory, theoreti- 

cal minimum variances in height fields of various isobaric 
levels were obtained. With the aid of governing equations 
of each model, these minimum variances were transformed 
to final variances of forecast fields. Gaussian distributions 
were used to  transform these minimum variances to maxi- 
mum probabilities of forecast fields to be within specified 
magnitudes of true fields. 

Theoretical mean probabilities were higher everywhere 
than the observed ones, in support of the network sam- 
pling theory which purportedly provides limiting probabil- 
ities not to be exceeded. The difference between the curves 
of. theoretical and observed probabilities was found to be 
larger at all levels for 48-hr forecast verification when 
compared with the corresponding 24-hr forecast verifica- 
tion. This result, demonstrates the inadequacy of all 
models for forecasting over longer periods. Further, the 
growth of theoretical variances with time was found to 
depend on the choice of the isobaric level and the terms 
that were incorporated in the governing equations of the 
models. In  general, the growth was observed to  be more 
pronounced in more complex models that incorporated 
additional terms of the vorticity equation; for the two-level 
balance model, the doubling time of the average standard 
deviation was found to be about 2 days. The effect of 
increasing the station density indicated that a substan- 
tial reduction in initial and final variances is realized by 
increasing the number of reporting stations by two to 
three times the present number. 

The development of the variance equation in this 
study is based on the assumption that a given synoptic 
situation is analyzed subjectively using the data obtained 
from reporting stations. In recent years, the usual con- 
ventional analysis is more and more replaced by an 
objective analysis that can be done on an electronic 
computer in much shorter time. One of the standard 
methods employed in an objective analysis obtains an esti- 
mate of a variable at any grid point in terms of a weightedlinear 
combination of data from surrounding stations. In  such 
a scheme, the initial uncertainty is in general a function 
of network density and the chosen set of weights. A 
selected set of weights defines a response function, and the 
initial uncertainty will in general be proportional to the 
fraction of the variance that remains unaccounted for 
by the response function. This procedure introduces 
systematic errors a t  every grid point that will grow with 
time and will in turn affect the forecast fields in a similar 
manner as do the errors from the conventional analysis. 
I t  is felt that a comparison of the distribution of initial 
uncertainties encountered in subjective and objective 
analyses may suggest a criterion for a proper choice of an 
objective analysis scheme. 

The present study is limited to rather simple models 
of the atmosphere. In the last few years, meteorologists 
have considered more complex models, such as ones based 
on complete balance filter and primitive equations. It 
seems worthwhile to carry out a detailed error analysis 
of these models using various input levels. Such a study 
can be designed to assess the importance of various terms 
at different levels together with the initial uncertainties 
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associated with them. Further, we can determine the 
growth rates of initial uncertainties for individual terms 
of the governing equations by carrying out numerical 
integration in time. This may enable us to decide upon 
an optium physical model that would have the least growth 
of initial uncertainties for a given synoptic situation. 

APPENDIX-DEVELOPMENT OF VARIANCE 
EQUATIONS IN VARIOUS MODELS 

Consider first the simple barotropic model for which the 
vorticity equation is given by (3). When expressing this 
in finite-difference form for the central point 0 as shown 
in figure 11, 

ii+k2+i3+i,-4io=t[(z2-~24>(~1-13)- (zl-z3)(%- %)I. 
(11) 

Further, expressing Q, the absolute vorticity, at  every 
grid point in terms of z and using the quasi-geostrophic 
assumption, we can expand this equation to write 

i l - k i 2 - k  i 3 - k  i 4 - -4 iO= 2 

In  this equation, i is the height tendency, az/at, g the 
acceleration of gravity, d the grid distance, m the map 
scale factor, f the Coriolis parameter, and p is the average 
value of the Coriolis parameter taken over the region 
of analysis. A subscript indicates the grid point a t  which 
a variable is evaluated. 

By procedures described elsewhere (Gleeson 1961), 
errors of tendencies on the left side of equation (11) can 
be represented in terms of initial-state errors of quantities 
on the right side. Squaring and averaging both sides of 
the error equation yields the variance equation 

~'(51)  +u'(&) +u2(Z3) +u2(2g) + l 6 ~ ~ ( k o )  

+ (zl-z3)2[(z;)2+ ~ z : , ~ 2 1 + ~ z ~ + z , - ~ l - ~ , ~ 2 ~ ~ ~ ~ ~ 2 ~ ~ ~ ~ o ~ 2 1  

+(zl+z2-Z3-2*)2[(2~)2+(Z:2)211 

Here, u2(iN) is the variance ob i a t  a grid point N in 
represents the gradient of z a t  N; for figure 11, and 

In  developing the variance equation, the cross p ~ ~ d ~ t s  
of tendency errors at  pairs of grid points are formed, but 
they were omitted from equation (13). It can be reasoned 
that, if these errors are correlated, the correlation will be 
positive, and this will in general increase u2(iN).  Thus, 
their neglect minimizes the tendency errors to some 
extent. 

Initially, the right side of equation (13) can be, com- 
puted using the initial values of z at d8eront grid points. 
The equation can then be solved by a standard relaxation 
procedure to yield u2(2 )  everywhere, leaving three grid 
points on all sides of the boundary. At every time step, 
the variance equation is solved in a similar way using the 
predicted values of z. 

In  the case of the three-level quasi-geostrophic m ~ d d ,  
equation (4) is used to obtain the variance equation. Ira. 
this equation, there are additional terms that h ~ ~ l v e  the 
variance of u at dserent levels. 'ko obtain the vashnnce u 
equation, we consider the quasi-geostropic w equation (6) 
and express it in finite-difference form using the height 
values, z, a t  levels below and above the level where the o 
equation is being solved. The procedure is quite straighb- 
forward and will not be repeated here. The solution of the 
variance w equation is again obtained using a standard 
relaxation procedure. 

The vorticity equation for the two-level balance model 
is written in terms of the stream function JI, The variance 
of the stream function can be obtained from the initial 
variance of the z field making use of the balance equation. 
Having obtained the variance of the stream function, t4e 
variance of its tendency, that is, u2(&h/&), can be obtained 
in exactly the same way as the variance of the height 
tendency is obtained in the barotropic model. 

VARIANCE OF THE FORECAST HEIGHU FIELD 

As we integrate the vorticity equation using a constant 
time step T, we obtain the forecast heights a t  every 
time step, using forward time differences for the first t h e  
step and centered time dserences for the subsequent tinog, 
steps. Schematically, at  any grid point, we can write the 
forecast equations as 

z2=zo+2T($) for the second time step, 

23=21+2T($) for the thira2 t h e  step, 

1 

and 

2 

and so on. Here, the subscript indicates the time step, 
0 indicating the initial t h e ,  1 for the first time, and SO 0p1. 

The value of the constant t h e  step T is used as 1 h 
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throughout. Combining these equations, we have 

2 2 K = 2 0 + 2  T (:;) - at the end of 2K hr, 
i = l  2i-1 

and (15) 

at the end of 2K+1 hr. 

Taking the variance of the above, we obtain 

In obtaining these equations, the cross-product terms 
are omitted as before, assuming that the errors in height 
tendencies at  different time steps are uncorrelated. The 
neglect of the cross-product terms thus minimizes the 
variance. 

Equations (16) enable us to obtain the variance of the 
forecast height field at any future time in terms of 
variance of the initial height field and variance of the 
height tendencies at different time steps. 

The solution of all variance equations was obtained 
using a standard relaxation procedure and did not present 
any difliculties. At times, a few computed values of 
rP(;) were found to be slightly negative. These values 

were found in the region of weak gradients where the 
magnitude of initial variance was very small. For simplic- 
ity, each negative u’( l )  was replaced by zero at  that time 
step. 
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